

Year 8 Separating Techniques Knowledge Organiser

1.Key words and definitions		
Dissolve	Becomes part of a liquid	
Solvent	Liquid in which something dissolves	
Solution	A solvent containing a dissolved solute	
Soluble	Something that does dissolve	
Mixture	A solvent containing solid particles that do not dissolve	
Solute	The solid substance to be dissolved	

2. Separation methods		
Distillation	Evaporation followed by condensation of a solvent	
	from a solution	
Filtration	Separation of insoluble solute particles from a mix-	
	ture	
Chroma-	Separation of dissolved solute particles. The most	
tography	soluble solutes travel the furthest.	
Crystallisation	Separation of soluble solid from a solvent.	
3 Water key temperatures		

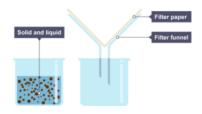
3. Water, key temperatures

1.Freezing/melting point:	0°C
2.Dew/boiling point:	100°C

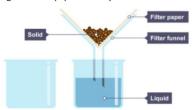
Pure Substances

Element

Mixtures

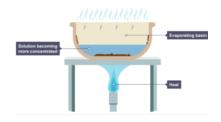


Pure or Impure

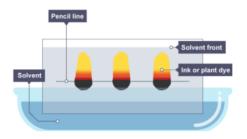

r are or impare		
Pure	Only one type of par-	
	ticle	

4. Filtration

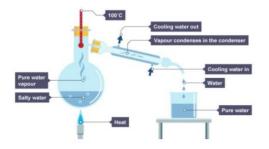
A method for separating an insoluble solid from a liquid.
A beaker containing a mixture of insoluble solid and liquid. There is filter paper in a filter funnel above another beaker.



- The mixture if insoluble solid and liquid is poured into the filter funnel.
- The liquid particles are small enough to pass through the paper as a filtrate. The solid particles are too large to pass through the filter paper and stay behind as the residue.


5. Crystallisation

- · A method used to separate a soluble solid from a liquid.
- A solution is placed in an evaporating basin and heated with a Bunsen Burner.
- The water will begin to evaporate and solid particles will begin to form in the basin.
- Once the water has evaporated, it will leave solid crystals behind


6. Chromatography

- Paper chromatography is a method for separating dissolved substance from one another. Often used when the dissolved substance are coloured such as inks, food colouring or plant dyes.
- A pencil line us drawn on the paper, and spots of ink are placed on the line.
- There is a solvent usually water or ethanol in a container/beaker.
- The paper is lowered into the solvent. The solvent travels up the paper, taking some of the substances with it.
- As the solvent travels up the paper, the different coloured substances are spread apart.

7. Distillation

- A method used for separating the solvent from a solution. E.g. water can be separated from a salt solution because the water has a much lower boiling point than the salt.
- Salt water is heated. The water evaporates and it's vapours rise
- The vapours rise and pass into the condenser, where they cool and condense.
- Liquid water drips into a beaker and the salt will be left in the round bottom flask.

