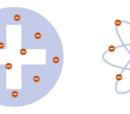



## Year 10 Physics 4: Atomic Structure Knowledge Organiser



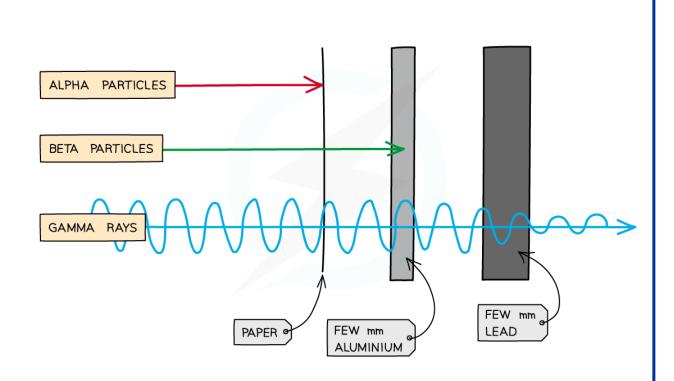

| 1. Keywords      |                                                                                              |
|------------------|----------------------------------------------------------------------------------------------|
| 1. Atom          | The smallest possible piece of an element. Has a radius of 0.1nm (or 1x10 <sup>-10</sup> m). |
| 2. Element       | A substance in which all the atoms have the same atomic number.                              |
| 3. Isotope       | Atoms with the same number of protons but different numbers of neutrons.                     |
| 4. Molecule      | Two or more atoms bonded together                                                            |
| 5. Com-<br>pound | Two or more <u>different</u> atoms bonded together                                           |
| 6. Mixture       | At least two different elements or compounds together. Can be separated easily.              |
| 7. Nucleus       | The centre of an atom. Contains protons and neutrons                                         |
| 8. Proton        | A positively charged particle found in the nucle-<br>us                                      |
| 9. Neutron       | A neutral particle found in the nucleus. Has no charge                                       |
| 10. Electron     | A negatively charged particle found in energy levels (shells) around the nucleus             |



| 2. Properties of sub-atomic particles |                                                         |          |                             |  |  |
|---------------------------------------|---------------------------------------------------------|----------|-----------------------------|--|--|
| Particle                              | Relative                                                | Relative | Location                    |  |  |
| Proton                                | 1                                                       | +]       | Nucleus                     |  |  |
| Neutron                               | 1                                                       | 0        | Nucleus                     |  |  |
| Electron                              | 0                                                       | -1       | Shells                      |  |  |
| Key                                   |                                                         |          |                             |  |  |
| a                                     | relative atomic<br>atomic syn<br>name<br>tomic (proton) | nbol     | 1<br>H<br><sup>drogen</sup> |  |  |

| 3. Using the p | periodic table                                                  |                                            |
|----------------|-----------------------------------------------------------------|--------------------------------------------|
| Number<br>of   | Is the                                                          | Found by                                   |
| Protons        | Atomic (proton)<br>number                                       | Smaller num-<br>ber on period-<br>ic table |
| Electrons      | Atomic (proton)<br>number                                       | Smaller num-<br>ber on period-<br>ic table |
| Neutrons       | Difference be-<br>tween the atomic<br>mass and atomic<br>number | Big number –<br>small number               |

| 4. History of the atom     |                |                                                      |         |  |
|----------------------------|----------------|------------------------------------------------------|---------|--|
| Discovery                  | Ву             | Model                                                | Diagram |  |
| Solid particle called atom | John Dalton    | Particle: solid spheres                              | 1       |  |
| The electron               | JJ Thompson    | Plum pudding: positive 'cake' with negative 'plums'  | 2       |  |
| Nucleus                    | Rutherford     | Nuclear: Positive nucleus surrounded by electrons    | 3       |  |
| Neutron                    | James Chadwick | Nuclear: Now with protons and neutrons in nucleus    | 3       |  |
| Energy levels<br>(shells)  | Niels Bohr     | Planetary: Electrons now 'orbit' in different shells | 4       |  |








## Year 10 Physics 4: Atomic Structure Knowledge Organiser

| 5. Radioactive decay keywords  |                                                                                                          |  |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------|--|--|
| Unstable                       | The ability for a nucleus to decay                                                                       |  |  |
| Radioactive de-<br>cay         | The RANDOM process of radiation being released by a nucleus. A different element in formed               |  |  |
| Nuclear radiation              | The energy and particles released when an un-<br>stable nucleus decays                                   |  |  |
| Activity                       | How quickly a radioactive sample decays                                                                  |  |  |
| Becquerel                      | The unit of activity                                                                                     |  |  |
| Geiger-Muller<br>tube          | A device to measure the count rate of a radioac-<br>tive source                                          |  |  |
| Count rate                     | The number of radioactive decays per second                                                              |  |  |
| lonising power                 | How well it knocks off electrons and damages cells                                                       |  |  |
| Half life                      | The time it takes half of a group of radioactive nuclei to decay                                         |  |  |
| Radioactive con-<br>tamination | Unwanted hazardous materials containing radio-<br>active atoms                                           |  |  |
| Peer review                    | When the findings of one expert are double<br>checked by another expert to make sure they are<br>correct |  |  |

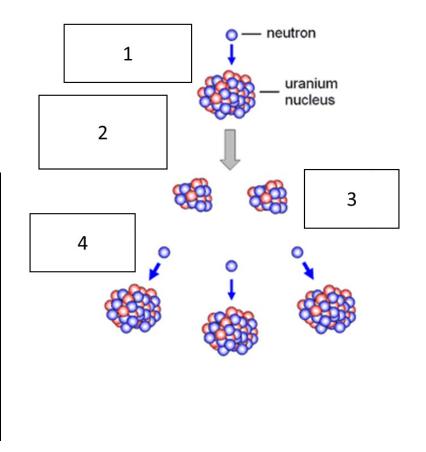


QEMS

| 6. Ionising radiation |       |        |                      |        |              |                               |                |
|-----------------------|-------|--------|----------------------|--------|--------------|-------------------------------|----------------|
|                       | Name  | Symbol | Made of              | Charge | Range in air | Penetration                   | lonising power |
| 1                     | Alpha | a      | Helium nucleus       | +2     | 5 cm         | Blocked by paper<br>and skin  | High           |
| 2                     | Beta  | β      | Fast moving electron | -1     | 15 cm        | Blocked by thick<br>aluminium | Medium         |
| 3                     | Gamma | γ      | Electromagnetic wave | N/A    | Very long    | Blocked by thick<br>lead      | low            |



## Year 10 Physics 4: Atomic Structure Knowledge Organiser




| 7. Background radiation (TRIPLE ONLY)                            |                                 |  |  |
|------------------------------------------------------------------|---------------------------------|--|--|
| Background radiation is the radiation all around us all the time |                                 |  |  |
| Natural sources: Man-made sources:                               |                                 |  |  |
| •Rocks                                                           | •Fallout from weapons testing   |  |  |
| •Cosmic rays                                                     | •Fallout from nuclear incidents |  |  |

| 8. Uses of nuclear radiation (TRIPLE ONLY) |                |                      |                   |                      |
|--------------------------------------------|----------------|----------------------|-------------------|----------------------|
| Use                                        | Half life      | Penetration<br>power | lonising<br>power | Preferred<br>emitter |
| Exploring in-<br>ternal organs             | A few<br>hours | Med-high             | Low               | Gamma                |
| Radiotherapy                               | A few<br>years | High                 | Med/Low           | Gamma (or<br>Beta)   |

|                                                                                                                  | 9. Nuclear Fission vs Fusion (TRIPLE ONLY) |                                                                                                              |                                                                               |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Figure 1<br>$^{2}_{1}H + ^{2}_{1}H \implies ^{4}_{2}He + Energy$<br>$P + P \Rightarrow P \Rightarrow P + Energy$ | Nuclear<br>fission                         | When a large<br>nuclei breaks into<br>smaller nuclei<br>releasing energy                                     | E.g:<br>•Nuclear power<br>stations •Atomic<br>bombs •The core<br>of the Earth |
|                                                                                                                  | Nuclear<br>fusion                          | When small nu-<br>clei join together<br>to form larger<br>nuclei. Some<br>mass in convert-<br>ed into energy | E.g:<br>•The<br>Sun •Hydrogen<br>bombs                                        |

| 10. | 10. Nuclear fission (TRIPLE ONLY)                           |  |  |
|-----|-------------------------------------------------------------|--|--|
| 1   | A slow neutron hits the nucleus                             |  |  |
| 2   | The nucleus becomes unstable and splits roughly in half     |  |  |
| 3   | 3 neutrons and gamma rays are released                      |  |  |
| 4   | These neutrons hit other nuclei causing a chain reaction    |  |  |
| 5   | If this is uncontrolled then it will result in an explosion |  |  |

