

Year 11 Physics 5: Forces and Motion Knowledge Organiser

1. Forces keywo	rds	2. Types of fo	rce					
Force	Something that makes a change hap-	Force	Between		Contact or non-	contact	Example	
Magnitude	The value of a force in newtons	Friction Two moving surf		aces Contact			Brakes	
Magrinode		Upthrust An object and v		vater	Contact		Boat	
Scalar	Things that have magnitude but not direct	Reaction Two stationary of		bjects	Contact		Book on shelf	
Vector	Things that have a magnitude and a	Air resistance	resistance A moving object and air		Contact		Plane	
direction. Forces are always vectors		Gravity Two masses		Non-contact		You and the earth		
Contact force	Can only act when two things touch	Tension	Two ends of an e	astic material Contact			Spring	
Non-contact force	Can act on things not touching	Magnetic Magnets and m		agnetic materials	etic materials Non-contact		Magnet picking up a nail	
Balanced	When forces are equal and opposite	3. Calculating weight		4. Calculating work		5. Hooke's law		
Unbalanced	When opposing forces are not equal to	Symbol	Name	Symbol	Name	Sym	I- Name	
(forces)	each other	W	Weight (N)	W	Work (J)			
Resultant (force)	The overall force once all the forces are considered			F	Force (N)		Force (N)	
Force arrows	Show direction and size of a force	m	Mass (Kg)			- K	(N/m)	
Newton	Unit force is measured in	g	Gravitational	S	Distance (m)	е	Extension (m)	
Newtonmeter	A spring calibrated so it has a scale to measure force			W = F x s Work done = Force x Dis-		F = k x e Force = Spring constant x		
Centre of mass	A point in the middle of an object where all its mass acts	On earth g = 10 N/kg		tance		Extension		
Elastic	A material that returns to its original shape after being deformed		\bigwedge				F	
Plastic	A material that does NOT return to its						$ \xrightarrow{ \mathbf{i} } $	

Year 11 Physics 5: Forces and Motion Knowledge Organiser

6. Energy stored in a spring					
Symbol	Name				
Ep	Elastic potential energy stored (J)				
1/2	Half (0.5)				
k	Spring constant (N/m)				
e	Extension (m)				
Ep=1/2 ke ²					
To calculate e 1.Measure the the object 2.M stretched leng 3.Extension = s	extension: e original length of Aeasure the gth of the object stretched length –				
8. Calculating pressure					
Symbol	Name				
F	Force (N)				
р	Pressure (Pa = n/m^2)				
А	Area (m ²)				

7. Moments

Α

1.To calculate a moment you need to know: How much force is being applied (Newtons, N)

The distance from the pivot that the force is being applied (Meters, m)

Moment = force x distance

2.The unit for moment is newton metre (Nm)

3.A small force over a large distance can generate the same moment as a large force over a small distance.

, Calculating pressure in column of liquid T ONLY)					
Symbol	Name				
g	Gravitational field strength (10 N/Kg)				
p	Pressure (Pa =n/m ²)				
h	Height (m)				
ρ	Density (kg/m³)				
p=hpg					
$\overline{\}$					

Symbol	Name		
S	Distance (m)		
V	Speed/Velocity (m/s)		
t	Time (s)		

11. Keywords				
Speed	Distance ÷ time. Scalar quantity			
Velocity	Distance (in a certain direction) ÷ time. Vector quantity			
Distance	How far and object moves. Scalar quantity			
Displacement	The straight line distance from the start point to the end point. Vector quantity			
Terminal ve- locity	The maximum speed reached when the forces are balanced			
12. Typical speeds				
Walking		1.5 m/s		
Running		3 m/s		
Cycling		6 m/s		
Sound		330 m/s		

Year 11 Physics 5: Forces and Motion Knowledge Organiser

13. D/T graph keywords			15. Uniform acceleration		9. Forces and braking			
Keyword	Meaning	Position on dis- tance time graph	$v^2 - u^2 = 2as$		Stopping dis- tance	The thinking distance + braking distance		
Accelerate	Speeding up	1	v	Final velocity (m/s)	Thinking distance	The distance travelled in the time it takes to react (typically 0.2s)		
Decelerate	Slowing down	2	u	Start velocity (m/s)	Factors affecting thinking distance	1.Tiredness 2.Drugs 3.Alcohol 4.Distractions (phones)		
Constant speed	d Staying the same speed	3	а	Acceleration (m/s²)	Braking distance	The distance travelled under a braking		
Stationary	Not moving	4	S Distance (m) 16. Uniform acceleration		Factors affecting	1.Road conditions (ice, water) 2.Tyre condition 3.Brake condition		
Speed	Distance covered in a certain time	The steepness of the line			braking distance			
a certain time ine tine				10. Momentum (H p m v Conservation of momentum	Momentum (Kgm/s) Mass (Kg) Velocity (m/s) The total mo- mentum before = the total mo- mentum after			
14. Acceleration			17. Newtons laws of motion					
a	Acceleration (m/s^2)] st	If the resultant force of or at a constant spee	on an object is zero the object either remains stationary ed			
		/ a τ \	2 nd	Force = mass x accel	eration			
t lime (s)			3 rd	When two objects interact the forces are equal and opposite				