l. Forces keywords	
Force	Something that makes a change hap- pen
Magnitude	The value of a force in newtons
Scalar	Things that have magnitude but not direct
Vector	Things that have a magnitude and a direction. Forces are always vectors
Contact force	Can only act when two things touch
Non-contact force	Can act on things not touching Balanced (forces) Unbalanced (forces) Resultant (force) When forces are equal and opposite each other also called equilibrium
When opposing forces are not equal to each other	
The overall force once all the forces are	
considered	

2. Types of force					
Force	Between		Contact or non-contact		Example
Friction	Two moving surfaces		Contact		Brakes
Upthrust	An object and water		Contact		Boat
Reaction	Two stationary objects		Contact		Book on shelf
Air resistance	A moving object and air		Contact		Plane
Gravity	Two masses		Non-contact		You and the earth
Tension	Two ends of an elastic material		Contact		Spring
Magnetic	Magnets and magnetic materials		Non-contact		Magnet picking up a nail
3. Calculating weight		4. Calculating work		5. Hooke's law	
Symbol	Name	Symbol	Name	Sym bol	Name
W	Weight (N)	W	Work (J)	F	Force (N)
m	Mass (Kg)	F	Force (N)	k	Spring constant (N/m)
9	Gravitational field strength	s	Distance (m)	e	Extension (m)
On earth $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$		$\begin{gathered} \text { W }=F \times s \\ \text { Work done }=\text { Force } \times \text { Dis- } \\ \text { tance } \end{gathered}$		$\begin{gathered} F=k \times e \\ \text { Force }=\begin{array}{c} \text { Spring constant } x \\ \\ \text { Extension } \end{array} \end{gathered}$	

Year 11 Physics 5: Forces and Motion Knowledge Organiser

6. Energy stored in a spring	
Symbol	Name
Ep	Elastic potential energy stored (J)
$1 / 2$	Half (0.5)
k	Spring constant $(\mathrm{N} / \mathrm{m})$
e	Extension (m)
$\mathrm{Ep}=1 / 2 \mathrm{ke}^{2}$	

To calculate extension:

1. Measure the original length of the object 2.Measure the stretched length of the object 3.Extension = stretched length original length

8. Calculating pressure		h	Height (m)
Symbol	Name		
F	Force (N)	ρ	Density (kg/m³)
P	$\left.\begin{array}{l} \text { Pressure } \\ \left(\mathrm{Pa}=\mathrm{n} / \mathrm{m}^{2}\right) \end{array}\right) \quad \mathrm{P}=\mathrm{p} \boldsymbol{\rho}$		
A	Area $\left(m^{2}\right)$		

11. Keywords	
Speed	Distance \div time. Scalar quantity
Velocity	Distance (in a certain direction) \div time. Vector quantity
Distance	How far and object moves. Scalar quantity
Displacement	The straight line distance from the start point to the end point. Vector quantity
Terminal ve- locity	The maximum speed reached when the forces are balanced

12. Typical speeds	
Walking	$1.5 \mathrm{~m} / \mathrm{s}$
Running	$3 \mathrm{~m} / \mathrm{s}$
Cycling	$6 \mathrm{~m} / \mathrm{s}$
Sound	$330 \mathrm{~m} / \mathrm{s}$

Year 11 Physics 5: Forces and Motion Knowledge Organiser

13. D/T graph keywords		
Keyword	Meaning	Position on dis- tance time graph
Accelerate	Speeding up	1
Decelerate	Slowing down	2
Constant speed	Staying the same speed	3
Stationary	Not moving	4
Speed	Distance covered in a certain time	The steepness of the line

15. Uniform acceleration	
$\mathrm{V}^{2}-\mathrm{u}^{2}=2 \mathrm{aS}$	
V	Final velocity (m/s)
\mathbf{u}	Start velocity $(\mathrm{m} / \mathrm{s})$
\mathbf{a}	Acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
\mathbf{S}	Distance (m)

9. Forces and braking	
Stopping dis- tance	The thinking distance + braking distance
Thinking distance	The distance travelled in the time it takes to react (typically 0.2s)
Factors affecting thinking distance	1.Tiredness 2.Drugs 3.Alcohol 4.Distractions (phones)
Braking distance	The distance travelled under a braking force
Factors affecting braking distance	1.Road conditions (ice, water) 2.Tyre condition 3.Brake condition

10. Momentum (HT ONLY)		
P	Momentum (Kgm/s)	
m	Mass (Kg)	
v	Velocity (m/s)	
Conservation of momentum	The total mo- mentum before =the total mo- mentum after	

17. Newtons laws of motion	
$1^{\text {st }}$	If the resultant force on an object is zero the object either remains stationary or at a constant speed
$2^{\text {nd }}$	Force $=$ mass \times acceleration
3 ra	When two objects interact the forces are equal and opposite

