

Year 11 Physics 5: Forces and Motion Knowledge Organiser

 Forces keyword 	ds	2. Types of fo	rce					
Force	Something that makes a change hap- pen	Force	Between		Contact or non-	contact	Example	
Magnitude	The value of a force in newtons	Friction	Friction Two moving surfaces		Contact		Brakes	
		Upthrust	An object and water		Contact		Boat	
Scalar	Things that have magnitude but not direct	Reaction	Two stationary objects		Contact		Book on shelf	
Vector	Things that have a magnitude and a		A moving object and air		Contact		Plane	
	direction. Forces are always vectors	Gravity	Two masses		Non-contact		You and the earth	
Contact force	Can only act when two things touch	Tension	Two ends of an	Two ends of an elastic material			Spring	
Non-contact force	Can act on things not touching	Magnetic	Magnets and m	Aagnets and magnetic materials Non-contact		Magnet picking up a nail		
Balanced (forces)	When forces are equal and opposite each other also called equilibrium	3. Calculati	ng weight	4. Calculating work		5. Hooke's law		
Unbalanced (forces)	When opposing forces are not equal to each other	Symbol	Name	Symbol	Name	Sym- bol	Name	
Resultant (force)	The overall force once all the forces are	W	Weight (N)	W	Work (J)	F	Force (N)	
	considered	m	Mass (Kg)	F	Force (N)	k	Spring constant	
Force arrows	Show direction and size of a force			S	Distance (m)	1	(N/m)	
Newton	Unit force is measured in	g	Gravitational field strength	, , , , , , , , , , , , , , , , , , ,		е	Extension (m)	
Newtonmeter	A spring calibrated so it has a scale to measure force			W = F x s Work done = Force x Dis-		F = k x e Force = Spring constant >		
Centre of mass	A point in the middle of an object where all its mass acts	On earth $g = 10 N/kg$		tance		Extension		
Elastic	A material that returns to its original shape after being deformed		$\widehat{\mathbf{w}}$		$\widehat{\mathbf{w}}$		F	
Plastic	A material that does NOT return to its original shape after being deformed			\vdash			\vdash	

Year 11 Physics 5: Forces and Motion Knowledge Organiser

6. Energy stored in a spring				
Symbol	Name			
Ep	Elastic potential energy stored (J)			
1/2	Half (0.5)			
k	Spring constant (N/m)			
е	Extension (m)			
$Ep=1/2 ke^2$				
To calculate extension: 1.Measure the original length of the object 2.Measure the stretched length of the object 3.Extension = stretched length – original length				
8. Calculating pressure				
Symbol	Name			
F	Force (N)			
р	Pressure (Pa = n/m ²)			

Area (m²)

Α

А

7. Moments

1.To calculate a moment you need to know: How much force is being applied (Newtons, N)

The distance from the pivot that the force is being applied (Meters, m)

Moment = force x distance

2.The unit for moment is newton metre (Nm)

3.A small force over a large distance can generate the same moment as a large force over a small distance.

. Calculating pressure in column of liquid HT ONLY)				
Symbol	Name			
g	Gravitational field strength (10 N/Kg)			
p	Pressure (Pa =n/m²)			
h	Height (m)			
ρ	Density (kg/m³)			
p=hpg				

Speed/Velocity (m/s)

÷		speed, volceny (11/3)			
t		Time (s)			
11. Keywords					
		ne. Scalar quantity			
Velocity	Distance (in a quantity	certain direction) ÷ time. Vector			
Distance How far and o		bject moves. Scalar quantity			
Displacement	The straight lin end point. Veo	ne distance from the start point to the ector quantity			
Terminal ve- locity balanced		n speed reached when the forces are			

v

12. Typical speeds			
Walking	1.5 m/s		
Running	3 m/s		
Cycling	6 m/s		
Sound	330 m/s		

Year 11 Physics 5: Forces and Motion Knowledge Organiser

13. D/T graph keywords		15. U	niform acceleration	9. Forces and braking			
Keyword	Meaning	Position on dis- tance time graph		$v^2 - u^2 = 2as$	Stopping dis- tance	The thinking distance + braking distance	
Accelerate	Speeding up	1	v	Final velocity (m/s)	Thinking distance	The distance travelled in the time it takes to react (typically 0.2s)	
Decelerate	Slowing down	2	u	Start velocity (m/s)	Factors affecting thinking distance	1.Tiredness 2.Drugs 3.Alcohol 4.Distractions (phones)	
Constant speed	Staying the same speed	3	а	Acceleration (m/s ²)	Braking distance	The distance travelled under a braking	
Stationary	Not moving	4	S	Distance (m)	Factors affecting	force 1.Road conditions (ice, water) 2.Tyre	
Speed	Distance covered in a certain time	The steepness of the line	16. Uniform acceleration		braking distance	condition 3.Brake condition	
Pizero point"	fast. 3 4 TIME	1 returning to "zero point"	10 9 8 velocity in 7 m/s 5 4 3 2 1 1 0	travelled	10. Momentum (H p m v Conservation of momentum	Momentum (Kgm/s) Mass (Kg) Velocity (m/s) The total mo- mentum before = the total mo- mentum after	
14. Acceleration a Acceleration (m/s ²)		17. N 1 st	lewtons laws of motion If the resultant force of or at a constant spee		the object either remains stationary		
	ange in velocity (m/s) e (s)		2 nd	Force = mass x accel	leration		
		· · · · · · · · · · · · · · · · · · ·	3 rd	When two objects int	eract the forces are equal and opposite		