

Y8 Angles in parallel lines and polygons

What do I need to be able to do?

By the end of this unit you should be able to:

- Identify alternate angles
- Identify corresponding angles
- Identify co-interior angles
- Find the sum of interior angles in polygons
- Find the sum of exterior angles in polygons
- Find interior angles in regular polygons

Keywords

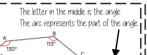
Parallel: Straight lines that never meet

Ongle: The figure formed by two straight lines meeting (measured in degrees)

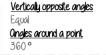
Transversal: O line that cuts across two or more other (normally parallel) lines

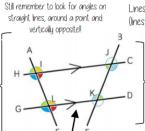
Isosceles: Two equal size lines and equal size angles (in a triangle or trapezium)

Polygon: 0 2D shape made with straight lines


Sum: Oddition (total of all the interior angles added together)

Regular polygon: All the sides have equal length; all the interior angles have equal size.

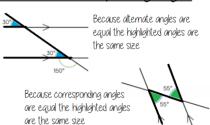

Basic angle rules and notation 🕡 Right Ongles Ocute Ongles 0°< angle <90° Obtuse


Ongle Notation: three letters ABC This is the angle at B = 113 Line Notation: two letters EC The line that joins E to C.

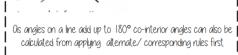
Co-interior anales

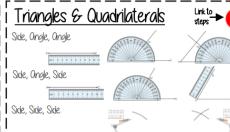
Parallel lines

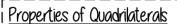
Corresponding angles often identified by their "F shape" in position.


Lines OF and BE are transversals (Ines that bisect the parallel lines)

> Olternate angles often identified by their "Z shape" in position


This notation identifies parallel lines


Olternate/Corresponding angles


180°< angle <360°

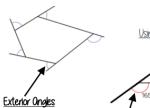
Parallelogram

Opposite sides are parallel Opposite angles are equal Co-interior angles

Trapezium

One pair of parallel lines

Kite


No parallel lines Equal lengths on top sides Equal lengths on bottom sides One pair of equal angles

Sum of exterior angles

Because co-interior angles have

a sum of 180° the highlighted

angle is 110°

Ore the angle formed from

the straight-line extension

at the side of the shape

Exterior anales all add up to 360°

Using exterior angles Exterior Onale

Interior angle + Exterior angle = straight line = 180° Exterior angle = 180 — 165 = 15°

Number of sides = 360° ÷ exterior angle Number of sides = $360 \div 15 = 24$ sides

Sum of interio<u>r angles</u>

Interior Ongles

The angles enclosed by the polygon

> This is an **irregular** polygon — the sides and angles are different sizes

(number of sides -2) x 180

Sum of the interior angles = $(5 - 2) \times 180$

Sum of the interior angles = 3×180 = 540°

Remember this is all of the interior angles added together

Missing angles in regular polygons

Interior angle

Exterior angle = $360 \div 8 = 45^{\circ}$ Interior angle = $(8-2) \times 180 = 6 \times 180 = 135^{\circ}$

Exterior angles in regular polygons = 360° ÷ number of sides

Interior angles in regular polygons = $(number of sides - 2) \times 180$ number of sides

Ш

Ш

Ш