

Y9 Probability

What do I need to be able to do?

By the end of this unit you should be able to:

- Find single event probability
- Find relative frequency
- Find expected outcomes
- Find independent events
- Use diagrams to work out probabilities

!! <u>Keywords</u>

Probability: the chance that something will happen

Relative Frequency: how often something happens divided by the outcomes

Independent: an event that is not effected by any other events.

Chance: the likelihood of a particular outcome.

Event: the outcome of a probability — a set of possible outcomes.

Biased: a built in error that makes all values wrong by a certain amount.

The probability scale Impossible Even chance Certain 0 or 0% l or 100% $0.5, \frac{1}{2}$ or 50%

The more likely an event the further up the probability it will be in comparison to another event

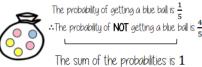
(It will have a probability closer to 1)

There are 2 pink and 2 yellow balls, so they have the same probability

There are 5 possible outcomes So 5 intervals on this scale, each interval value is $\frac{1}{2}$

🔃 I Single event probabilitu

Probability is always a value between 0 and 1



[] The table shows the probability of selecting a type of chocolate

Dark	Milk	White
0.15	0.35	

P(white chocolate) = 1 - 0.15 - 0.35

Relative Frequency

Frequency of event Total number of outcomes

Remember to calculate or identify the overall number of outcomes!

Colour	Frequency	Relative Frequency	
Green	6	0.3	
Yellow	12	0.6	
Blue	2	0.1	
	20		

Relative frequency can be used to find expected outcomes

e.g. Use the relative probability to find the expected outcome for green if there are 100 selections.

Relative frequency x Number of times

Expected outcomes

Expected outcomes are estimations. It is a long term average rather than a prediction.

Dark	Milk	White	
0.15	0.35	0.5	

The sum of the probabilities is 1

On experiment is carried out 400

Show that dark chocolate is expected to be selected 60 times

 $0.15 \times 400 = 60$

Independent events

The rolling of one dice has no impact on the rolling of the other. The individual probabilities should be calculated separately.

Probability of event 1 × Probability of event 2

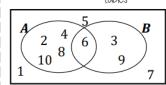
$$P(5) = \frac{1}{6}$$

$$P(5) = \frac{1}{6}$$
 $P(R) = \frac{1}{4}$

Find the probability of getting a 5 and

$$P(5 \text{ and } R) = \frac{1}{6} \times \frac{1}{4} = \frac{1}{24}$$

Using diagrams Recap Venn diagrams, Sample space diagrams and Two-way tables



	Car	Bus	Walk	Total	
Bays	15	24	14	53 47	
Girls	6	20	21		
Total	21	44	35	100	

The possible outcomes from rolling a dice

		1	2	3	4	5	6
	Н	ĺΉ	2,Н	3,H	4, H	5,H	6,H
]	Т	ļΤ	2,T	3,T	4 ,T	5,T	6,T