

Y10 FOUNDATION HT3 Charts, tables and averages

<u>Ungrouped Data</u>

The number of times an event happened \

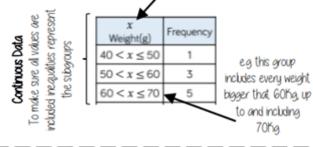
discrete data (Not

always a number)

The table shows the number of siblings students have. The answers were

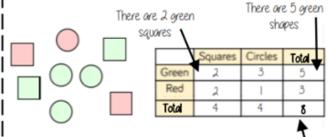
3,12,20,3,4,112,0,2

2 people had 0 siblings. This means there are 0 siblings to be counted here


Number of siblings	Frequency] /
0	2	0 ~
1	3] 3
2	4.]2+2+2+2OR2x4= 8
3	2	3+30R3x2=6
4	1]4 🔭
Best represented		e have 3 siblings so there are 6 siblings in total

OVEROLL there are 0+3+8+6+4 Siblings = 21 siblings Grouped Data

If we have a large spread of data it is
better to group it. This is so it is easier to look for a trend Form
groups of equal size to make comparison more valid and spread the
groups out from the smallest to the largest value.


Discrete Data e groups do not overlap	Cost of TV (£)	Tally	Freque	
	101 - 150	THL 11	7	
	151 - 200	744.744.1	- II	
\$ % °	201 - 250	THL	5	
- E	251 - 300	111	3	
	$\overline{}$			

We do not know the exact value of each item in a group — so an estimate would be bused to calculate the overall total (Michoint)

! Representing data in two-way tables

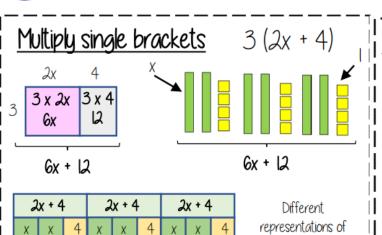
Two-way tables represent discrete information in a visual way that allows you to make conclusions, find probability or find totals of sub groups

<u>Using your two-way table</u>

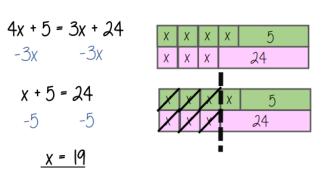
There are 8 items in total

To find a fraction

eg What fraction of the items are red? 3 red items


but 8 items in total = $\frac{3}{8}$

Interleaving: Use your fraction, decimal percentage equivalence knowledge


Y10 FOUNDATION HT3 Charts, tables and averages

3(2x+4) = 6x + 12

Equations with unknown on both sides

Keywords

Inverse: the operation that undoes what was done by the previous operation. (The opposite operation)

Commutative: the order of the operations do not matter.

Substitute: replace one variable with a number or new variable.

Evaluate: work out

Simplify: grouping and combining similar terms

Equivalent: something of equal value

Coefficient: a number used to multiply a variable

Solve: find a numerical value that satisfies an equation

<u>Olgebraic constructs</u>

Expression

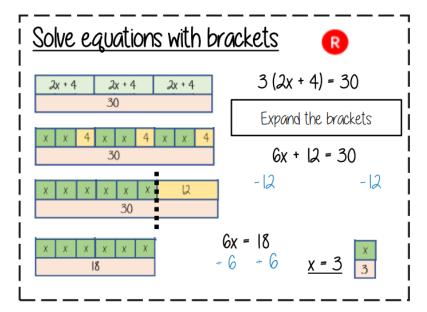
O sentence with a minimum of two numbers and one maths operation

Equation

a statement that two things are equal

6x + 12

Term


a single number or variable

Identity

On equation where both sides have variables that cause the same answer includes ≡

Formula

0 rule written with all mathematical symbols leg area of a rectangle 0 = b x h

Factorise into a single bracket 8x + 4 8x + 4 Try and make this the highest common factor

The two values multiply together (also the area) of the rectangle

8x + 4
$$\equiv$$
 4 (2x + 1) Note:
8x + 4 \equiv 2(4x + 2)
This is factorised but the HCF has not been used