Year 9 Physics: Forces, Movement and Energy Knowledge Organiser

1. Forces

FORCES

Forces change the speed, shape or direction of an object.

Force arrows show the direction AND size of the force.

Forces always come in pairs; interaction pairs.

Forces can be measured with a newton-meter (force meter).

Forces are measured in newtons (N).

The size and direction of a resultant force determines how (and if) an object will move.

All stationary objects are in equilibrium.

The resultant force is zero.

Objects moving at a steady speed have a resultant force of zero.

CONTACT FORCES	NON-CONTACT FORC- ES
Reaction force	Magnetism
Tension	Electrostatic
Friction & air re- sistance	Gravity
Applied force	

3. Speed and acceleration

Speed is measured in miles per hour (mph) or kilometres per hour (km/h). The speed of an object is always relative to the speed of the observer.

S= speed (m/s) d = distance (m) t = time (s)

Acceleration is the rate of change in an objects velocity.

v-u = end velocity—start velocity (change in velocity) a = acceleration (m/s²) t = time (s)

2. Distance time graphs

<u>KEYWORD</u>	<u>DEFINITION</u>
Acceleration	How quickly speed increases or decreases.
Air resistance	The force on an object moving through air that causes
(drag)	it to slow down.
Average speed	The overall distance travelled divided by overall time for a journey.
зреец	Forces acting on an object that are the same size but
Balanced	act in opposite directions.
Contact forces	Force that acts by direct contact; e.g. friction
Distance-	A graph that shows how far an object moves
time graph	each second.
Driving force	The force that is pushing or pulling something.
Equilibrium	State of an object when all forces are balanced.
Friction	Force opposing motion which is caused by the interac-
FIICTION	tion of surfaces moving over one another.
Gravitational field strength	The force from gravity on 1kg (N/kg)
Gravitational	A non-contact force that acts between two
force/ gravity	masses.
Interaction	When two objects interact there is a force on
pairs	each one that is the same size but in opposing directions.
Mass	The amount of matter 'stuff' in an object (kg).
Newtons (N)	Unit for measuring forces (N)
Non-contact	
force	Force that acts without direct contact, e.g. magnetism.
Resistive	Any force that acts to slow down a moving
forces	object.
Resultant force	Single force that can replace all the forces acting on an object and have the same effect.
Speed	How much distance is covered in a given time.
Unbalanced	Opposing forces on an object that are unequal.
Weight	The force of gravity due to the Earth (planet/moon) on an object. Measured in N.

Year 9 Physics: Forces, Movement and Energy Knowledge Organiser

4. Mass and weight

KEYWORD	<u>DEFINITION</u>
Chemical energy store	Emptied during chemical reactions when energy its transferred to surroundings; e.g. burning fuel.
Dissipation	Becoming spread out wastefully to the surroundings.
Elastic energy sto	re Filled when a material is stretched or compressed; e.g. stretching a spring.

6. Energy

Energy can be **dissipated/ wasted** due to **friction** (energy transferred to a thermal store / sound) or when objects get **hot** and transfer energy to anything at a lower temperature.

The efficiency of an appliance can be calculated by:

$$Efficiency = \frac{Useful Energy Output}{Energy Input} \times 100\%$$

5. Energy Stores and Transfers

ENERGY STORES:

Chemical

Thermal

Elastic Kinetic

Gravitational potential

Nuclear

Magnetic

Electrostatic

(Revision tip: use the first letter of each store to write a mnemonic to help you remember them).

Energy is transferred by:

Heating

Mechanically (by movement/ change in position)

Electric current

Waves (sound & light)

Dissipation	surroundings.
Elastic energy store	Filled when a material is stretched or compressed; e.g. stretching a spring.
Energy	Energy is needed to make things happen.
Energy resources	Something with stored energy that can be released in a useful way.
Fossil fuels	Non-renewable energy resource formed from dead animals and plants, millions of years ago. E.g. coal, oil and natural gas.
Gravitational po- tential energy store	Filled when an object is raised; e.g. book on a shelf or when climbing a ladder.
Joules	The unit of energy, symbol J 1 kilojoule (kJ) = 1000 J
Kinetic energy store	Filled when an object speeds up/ moves; e.g. when a car accelerates.
Law of conserva- tion of energy	Energy cannot be created or destroyed, only transferred between stores.
	An energy resource that cannot be re-

placed and will be used up, such as coal,

An energy resource that can be replaced

Filled when an object is warmed up; e.g.

and will not run out; e.g. solar, wind,

waves, geothermal and biomass.

heating water in a kettle.

oil or gas, or nuclear.

7. Energy Transfers

Energy Transfer: The movement of energy from one store to another.

How it transfers
Physical movement
Movement of charge in electrical currents
Via conduction or convection
Light, sound or heat

Energy Key points

Theory	Definition
Conservation of energy	Energy cannot be created or destroyed Energy can only change store within a system
Dissipation of energy	Energy if lost from a system, spreads out, often as heat
System	Is an object or group of objects
Wasted energy	Energy that is not usefully transferred

REDUCING ENERGY USE

Use fewer appliances, Use appliances with a lower power rating, Use appliances for fewer hours. Insulate the home; this reduces the rate at which energy is transferred to surroundings; reducing need to heat the house.

Non-renewable

Renewable

Thermal energy

store